PURDUE UNIVERSITY

Dylan Hickey (AE), John Hyatt (ASM), Trevor Mills (ASM)

Introduction

Problem Definition

>A local farmer needs a suspension system installed on his farm wagon that will prevent damage to produce during transport to and from selling points.

Background Information

- > Payloads range from 3000 lbs when hauling sweet corn to 30 lbs at the end of the day.
- \succ Damaged produce reduces customer satisfaction and is a financial loss for the farmer.
- \succ Estimated losses are \$20 a day.
- > Farmer has 8 wagons that he uses to sell produce.

Constraints and Criteria

- \succ Must dampen when fully loaded and empty
- \succ Must attach to current wagon
- ► Must be towable behind truck
- ≻Minimal cost
- ➤ Ease of installation
- ➤ Easily replicated

Design Matrix

- > Matrix developed to determine optimal solution
- Scoring and criteria based on desired outcome
- > Highest scoring design used in finished product
- > Similar design matrix used to determine location for suspension system

	Cost	Dampening Effect	Payload	Durability	Ease of Installation and Replication	Adjustability	
Score	0.25	0.25	0.1	0.1	0.2	0.1	Total Point: 1 Point
Airbags with Lateral							
Support	$4^*(0.25) = 1.0$	8*(.25) = 2.0	7*(0.1) = .7	3 *(0.1) = .3	3*(0.20) = 1.0	$10^{*}(0.10) = 1.0$	Sum Total: 6.0
Hydraulic Shocks	4*(0.25) = 1.0	5*(.25) = 1.25	6*(0.1) = .6	6 * (0.1) = .6	7*(0.20) = 1.4	7*(.1) = .7	Sum Total: 5.55
Leaf Springs with							
shock absorbers	8*(.25) = 2.0	6*(.25) = 1.5	10*(0.1) = .5	8 * (0.1) = .8	10*(0.20) = 1.2	2*(0.10) = 0.2	Sum Total: 6.2
Magnetic Adjustable							
Shocks	1*(0.25) = 0.25	10*(0.25) = 2.5	8*(.1) = .8	5 * (0.1) = .5	2*(0.20) = .4	10*(.10) = 1.0	Sum Total: 5.45
Torsion Bar	5*(0.25) = 1.25	6*(0.25) = 1.5	5*(0.1) = .5	8 * (0.1) = .8	5*(0.20) = 1.0	5*(0.10) = 0.5	Sum Total: 5.55
Coilovers	5*(0.25) = 1.25	7*(.25) = 1.75	5*(0.1) = .5	6 * (0.1) = .8	3*(0.20) = 1.0	2*(0.10) = 0.2	Sum Total: 5.5

Sponsor: Dr. Martin Okos Professor Agricultural & Biological Engineering/Biochem and Food **Proccesing Engineer**

Technical Advisor: Dr. John Lumkes

CAPSTONE/DESIGN EXPERIENCE 2019

OM-3 Wagon Suspension Agricultural Biological

Final Design

> Double eye trailer leaf springs with a 1250 lb. capacity mounted above the axle to frame of the bed. > Shock absorbers to dampen leaf spring oscillations. ➢Ride height will be increased by 7.75" unloaded and 6.75" when fully loaded.

Alternative Designs

- > Airbags with Lateral Stabilization ➤ Coilovers
- ➤ Magnetic Adjustable Shocks
- ➤ Hydraulic Shocks
- ➤ Torsion Bar
- Stabilization In Bed

Instructors: Dr. Robert Stwalley Dr. John Evans

Acknowledgements: Scott Brand David Wilson Carol Weaver

	EI	N G	12.3	N	E	E	RI	N (
Economic Analysis								
Component	cations					Quantity	y Uni	
Leaf Springs	US-1041 1250 lbs. Capacity						4	\$
Shock Absorbers	rs Magnum 65177 Gas Shocks						4	\$
Mounting Brackets 1018 Steel					N/A	\$		
U-Bolts and Nuts 1/2"-20, 2" inside width, 6" leg						8	\$	
Shackles	2" Shackle				8	\$		
Shackle Bolts	9/16"-12, 3" Long, w/Locknut			12	\$			
								Tot
Return On Investment								
	Loss Per Day \$2		\$20					
	3 Days/ Week \$			\$60				
	18 weeks/ year \$			\$1,080				
		ROI at	25%	red	uctior	1 3 u	5 weeks se	s of

FEA Analysis

> Ran finite element analysis on leaf spring hangers to validate design. > Analysis was run with a 5000 lb vertical load on the bolt holes representing a 4g shock loading in a fully loaded condition, twice what was encountered in test > The max Von Mises Stress from the analysis was 24,000 psi. ➤ Brackets manufactured using 1018 steel which yielded a factor of safety of 8. > This maximum stress was below the fatigue limit of 1018 steel of 27,000 psi.

 \succ Wagon was tested before suspension was installed and after suspension was installed with an accelerometer. \succ Tested both empty and loaded with 3000 lbs to simulate real conditions. \succ Tested in gravel parking lot by ADM at 10 mph to replicate roughest conditions the farmer sees. > Saw a 25% average reduction in peak G loading in the vertical direction.

	Quantity	Unit	Cost	Total	Cost
s. Capacity	4	\$	33.95	\$	135.80
Gas Shocks	4	\$	50.00	\$	200.00
	N/A	\$	62.58	\$	62.58
width, 6" leg	8	\$	5.95	\$	47.60
	8	\$	1.62	\$	12.96
j, w/Locknut	12	\$	5.71	\$	68.52
		Total	Cost	\$ 52 ⁻	7.46

